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Abstract. The properties of a trapped ideal Bose gas inn-dimensional space are studied.
General analytic expressions of the critical temperatureTc of Bose–Einstein condensation, the
jump of heat capacity atTc and the fraction of condensation at temperatures belowTc have been
derived. How these physical quantities depend on the external potential, particle characteristics
and space dimensionality are discussed. We find that when a proper external potential is taken,
Bose–Einstein condensation may occur in any dimensional space.

1. Introduction

In an ideal Bose gas, the zero-momentum state can become macroscopically occupied,
and the system then undergoes a phase transition—Bose–Einstein condensation (BEC) [1].
Owing to the development of techniques to trap and cool atoms, BEC was ultimately
realized in 1995 [2–4]. These experimental achievements have stimulated great interest in
the theoretical study of Bose gas.

Einstein’s prediction is about ideal Bose gas. Although there are interactions between
bosons and their effects on critical temperatureTc and fraction of condensationN0/N are
understood for the experimental situation, they seem to be a few per cent or less, when the
density of the gas is low [5–7]. Moreover, due to the observation of Feshbach resonances
[8], a tuning of the s-wave scattering length is possible and almost ideal Bose–Einstein
condensates might be feasible. Thus it is well approximated that the Bose gas of low
density is treated as an ideal gas.

That all observations of BEC have taken place in external potentials implies that an
external potential has a significant effect on the performance of a Bose gas. In this paper,
analytic expressions of some physical quantities about BEC are derived and used to discuss
how BEC depends on the external potential, particle characteristics and space dimensionality.
The results obtained here are quite general. Many main results, such as the results about free
Bose gas, about BEC in one and two dimensions, aboutn-dimensional harmonic potential,
and so on, in current literature and more new conclusions, such as the general criteria for the
existance of BEC and for the behaviour (jump or not) of the specific heat, may be deduced
from them.
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2. The total particle number and total energy of the system

We consider an ideal Bose gas in an external potential inn-dimensional space with a single-
particle Hamiltonian

H = ε0

(
p

p0

)s
+ U0

(
r

r0

)t
(1)

whereε0, U0, s and t are all positive constants,p andr are, the momentum and coordinate
respectively, of a particle;p0 and r0 are the characteristic momentum and coordinate,
respectively. When the particle number of the systemN is large enough and the energy-
level spacing of the trapping potential is much smaller thankT = β−1 (these two conditions
are often satisfied, for example, in the experiment of the JILA group relative to BEC [2],
N ≈ 2000, when the frequency of the harmonic potential,ω = 2π × 200/s, is adopted,
the critical temperatureTc is about 170 nK, one has ¯hω/(kT ) ≈ 5.6× 10−3 � 1), the
Thomas–Fermi’s semiclassical approximation is valid [9]. Thus, sums over quantum states
may be replaced by integrals over phase space. The total number of particlesN may then
be expressed as

N = N0+Ne = N0+
∑ g

e(H−µ)/kT − 1
= N0+ g

hn

∫
dnrdnp

e(H−µ)/kT − 1
(2)

whereN0 andNe are, respectively, the number of bosons in the ground state and in the
excited states,µ is the chemical potential,k and h are, respectively, the Boltzmann and
Plank constants,g is the spin degenerate factor. The volume of ann-dimensional sphere

Vn = CnRn = πn/2

0(n2 + 1)
Rn (3)

implies that

dnR = Sn(R) dR = nCnRn−1 dR (4)

whereSn(R) is the surface of then-dimensional sphere. By using equation (4) and the
Bose integration

gl(z) ≡ 1

0(l)

∫ ∞
0

xl−1

z−1ex − 1
dx (5)

equation (2) may be expressed as

N = N0+
gC2

n0(
n
t
+ 1)0(n

s
+ 1)(r0p0)

ngλ(z)(kT )
λ

hnU
n/t

0 ε
n/s

0

(6)

where

λ = n

s
+ n
t

(7)

0(l) = ∫∞0 yl−1e−y dy is the Gamma function, andz = exp(µ/kT ) is the fugacity. Along
similar lines, the total energyE of the system can be written as

E =
∫

Hdnrdnp

e(H−µ)/kT − 1
= gC2

n λ0(
n
t
+ 1)0(n

s
+ 1)(r0p0)

ngλ+1(z)(kT )
λ+1

hnU
n/t

0 ε
n/s

0

. (8)
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3. The critical temperature, fraction of condensation and jump of heat capacity

The chemical potential of a Bose gas cannot be positive and is monotonically increasing
with temperature decreasing. WhenT → Tc, there areµ→ 0 and the particle number of
the ground state is still macroscopically negligible, i.e.N0 = 0. Then, we can obtain

kTc =
[

NhnU
n/t

0 ε
n/s

0

gC2
n0(

n
t
+ 1)0(n

s
+ 1)(r0p0)nζ(λ)

]1/λ

(9)

from equation (6), whereζ(x) = gx(1) =
∑∞

J=1
1
J x
(x > 1) is the Riemann zeta function.

At a temperatureT below Tc, from equations (6) and (9), we can obtain the fraction of
condensation

N0

N
= 1− Ne

N
= 1−

(
T

Tc

)λ
. (10)

From equation (8), the heat capacity with a given external potential at a temperatureT

aboveTc is given by

CT>Tc =
∂ET>Tc

∂T
= Nk

[
λ(λ+ 1)

gλ+1(z)

gλ(z)
− λ2 gλ(z)

gλ−1(z)

]
(11)

where we have used∂gn+1(z)

∂(ln z) = gn(z) and ∂N
∂T
= 0. At a temperatureT below Tc, there is

z = 1 (µ = 0), sogλ+1(z) = ζ(λ+ 1) and the total energy equation (8) reduces to

ET<Tc = NkT λ
ζ(λ+ 1)

ζ(λ)

(
T

Tc

)λ
. (12)

Consequently, at a temperatureT below Tc, we have the heat capacity

CT<Tc = Nkλ(λ+ 1)
ζ(λ+ 1)

ζ(λ)

(
T

Tc

)λ
. (13)

Equations (11) and (13) give a jump of heat capacity at critical temperature

1CT=Tc = CT −c − CT +c = Nkλ2 gλ(1)

gλ−1(1)
. (14)

4. Discussion

(1) Although a Bose gas only in an external potential has been studied, the above results
can be used for a free Bose gas confined in a container. Because whent →∞, equation (1)
describes a free Bose gas confined in a container with a radiusr0, that is, whent → ∞,
the potentialU → ∞ and U → 0 in the regions ofr > r0 and r < r0, respectively.
Equations (9), (10) and (14) then become

Tc = ε0

k

[
Nhn

gC2
n0(

n
s
+ 1)(r0p0)nζ(

n
s
)

]s/n
(15)

N0

N
= 1−

(
T

Tc

)n/s
(16)

1CT=Tc = Nk
(n
s

)2 ζ(n/s)

ζ(n/s − 1)
. (17)
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If we let n = 3, g = 1, s = 2 andε0 = p2
0

2m further, equations (15)–(17) may be reduced
to

Tc = h2

2πmk

[
N

V ζ
(

3
2

)]2/3

(18)

N0

N
= 1−

(
T

Tc

)2/3

(19)

1CT=Tc = 0. (20)

Equations (18)–(20) describe a non-relativistic free ideal Bose gases in three-dimensional
space, and coincide with the results in current textbooks of statistical mechanics [1], as they
should.

(2) For the case of a non-relativistic spinless Bose gas trapped in a harmonic potential

in three-dimensional space,n = 3, g = 1, s = t = 2 andε0 = p2
0

2m , equations (9), (10) and
(14) then give

Tc = h

πkr0

(
U0

2m

)1/2(
N

1.202

)1/3

(21)

N0

N
= 1−

(
T

Tc

)3

(22)

1CT=Tc
Nk

= 6.58 (23)

that have been obtained in [10]. It is worthwhile to point out that for an anisotropic harmonic
osilator potentialU =∑n

i=1
m
2ω

2
i r

2
i , the results obtained here can also be used, because so

long as we letωiri = ωr ′i , the potential may be written in an isotropic formU = m
2 (ωr

′
)2,

where(r
′
)2 =∑n

i=1(r
′
i )

2.
Moreover, under a certain external potential, whenn is chosen to be 2 or 1, the BEC in

low-dimensional space, as discussed in [11], may be discussed with equations (9), (10) and
(14). Furthermore, they may also be used to describe the case of fractional dimensionality,
and agree with [12].

(3) The results obtained in this paper are not only the general forms of some important
conclusions obtained in current literature as mentioned above, but also may be used to
derive some novel and general conclusions about BEC. For example, the general criterion
for BEC occurence

λ = n

s
+ n
t
> 1 (24)

can be obtained from equation (9). That is, only when equation (24) is satisfied, may BEC
take place. Equation (24) mirrors that the criterion relates not only to the dimensionality of
space and characteristics of particles, but also to the shape (not the strength) of the external
potential.

Considering non-relativistic Bose gas (i.e.s = 2), it is well understood that there exists
no BEC for a free system (i.e.t → ∞) if the space dimensionalityn 6 2. In contrast,
when the system is trapped in a harmonic potential (i.e.t = 2), it may undergo BEC if
n = 2, however, there still exists no BEC ifn = 1 [11]. But if another shape of external
potential, e.g.t = 1

2, is adopted, the non-relativistic Bose gas may undergo BEC even in
one-dimensional space. From equation (24), we can draw a conclusion that BEC may take
place in any dimensional space if a proper external potential is introduced.
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Figure 1. The heat capacity versus temperature for non-relativistic ideal Bose gas trapped in a
harmonic potential when the space dimensionalityn = 3, 2.5, and 2.

For an ultrarelativistic Bose gas (i.e.s = 1), there is only one case that exists in which
there is no BEC, i.e. when the system is free and in one-dimensional space. Any other
case with external potential (i.e.t 6→ ∞) or n > 1 may undergo BEC. It is different from
[13] which deals only with a free system. Of course, when the inclusion of antiparticles in
relativistic theories is considered, the conclusion should be reconsidered.

(4) Equation (14) implies a criterion on the continuity of heat capacity at the critical
temperature. If

λ = n

s
+ n
t
> 2 (25)

there is a jump of heat capacity at critical temperature, otherwise, there exists no jump if
1 < λ 6 2 or even no BEC ifλ 6 1. Therefore, for a non-relativistic ideal Bose gas
trapped in a harmonic potential in three-dimensional space, there is a jump of heat capacity
at critical temperature given by equation (14). For a non-relativistic free ideal Bose gas
in three-dimensional space,s = 2, n = 3 and t → ∞, the heat capacity is continuous at
critical temperature because equation (24) is satisfied while equation (25) is not.

Figure 1 shows the heat capacity versus temperature for a non-relativistic ideal Bose
gas trapped in a harmonic potential when the space dimensionality is, respectively, 3, 2.5
and 2.

(5) Equation (9) mirrors the dependence of critical temperature on the total particle
number, shape of external potential, characteristics of particles and dimensionality of space.
For the case of a spinless non-relativistic ideal Bose gas trapped in a harmonic potential
[14], U0 = mω2

2 r2
0, ε0 = ps0

2m , and equation (9) then reduces to

Tc = h̄ω
k

[
N

ζ(n)

]1/n

. (26)

Equation (26) expresses the dependence of critical temperature on the space dimensionality.
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After a simple calculation, we have values ofkTc
h̄ω

at 0.94N
1
3 , 0.89N

2
5 and 0.78N

1
2 when

the space dimensionality is, respectively, 3, 2.5 and 2.
Equation (9) can also be reduced to discuss the dependence of critical temperature on

the external potential for an ideal Bose gas in a certain dimensional space. The possibility
of controlling the critical temperature through setting up some parameters in equation (9),
especially the shape of external potential, to facilitate the realization of BEC is exciting.
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